Binary Heap

The National Valve Museum: Amazing Vacuum Tube Resource

Posted on: November 17, 2010

Found Here: The National Vacuum Tube Museum

Wiki:

A vacuum tube consists of electrodes in a vacuum in an insulating heat-resistant envelope which is usually tubular. Many tubes have glass envelopes, though some types such as power tubes may have ceramic or metal envelopes. The electrodes are attached to leads which pass through the envelope via an airtight seal. On most tubes, the leads are designed to plug into a tube socket for easy replacement.

The simplest vacuum tubes resemble incandescent light bulbs in that they have a filament sealed in an evacuated glass envelope. When hot, the filament releases electrons into the vacuum: a process called thermionic emission. The resulting negatively charged cloud of electrons is called a space charge. These electrons will be drawn to a metal plate inside the envelope, if the plate (also called the anode) is positively charged relative to the filament (or cathode). The result is a flow of electrons from filament to plate. This cannot work in the reverse direction because the plate is not heated and does not emit electrons. This very simple example described can thus be seen to operate as a diode: a device that conducts current only in one direction. The vacuum tube diode conducts conventional current from plate (anode) to the filament (cathode); this is the opposite direction to the actual flow of electrons (called electron current).

Vacuum tubes require a large temperature difference between the hot cathode and the cold anode. Because of this, vacuum tubes are inherently power-inefficient; enclosing the tube within a heat-retaining envelope of insulation would allow the entire tube to reach the same temperature, resulting in electron emission from the anode that would counter the normal one-way current. Because the tube requires a vacuum to operate, convection cooling of the anode is not generally possible unless the anode forms a part of the vacuum envelope (in which case the cooling is by conduction through the anode material and then convection outside the vacuum envelope). Thus anode cooling occurs in most tubes through black-body radiation and conduction of heat to the outer glass envelope via the anode mounting frame. Cold cathode tubes do not rely on thermionic emission at the cathode and usually have some form of gas discharge as the operating principle; such tubes are used for lighting (neon lamps) or as voltage regulators.

Sometimes another electrode, called a control grid, is added between the cathode and the anode. The vacuum tube is then known as a “triode.” A triode is a voltage-controlled device, in that a voltage that is applied as an input to the grid can be used to modulate the rate of electron flow between anode and cathode. The relationship between this input voltage and the output current is determined by a transconductance function. Control grid current is practically negligible in most circuits. The solid-state device most closely analogous to the vacuum tube is the JFET, although the vacuum tube typically operates at far higher voltage (and power) levels than the JFET.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

My Delicious Bookmarks

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 130 other followers

Categories

Blog Stats

  • 341,173 hits

Blog Archive

November 2010
M T W T F S S
« Oct   Dec »
1234567
891011121314
15161718192021
22232425262728
2930  

Site Meter

Follow

Get every new post delivered to your Inbox.

Join 130 other followers

%d bloggers like this: